162 research outputs found

    Stimulus Familiarity Affects Perceptual Restoration in the European Starling (Sturnus vulgaris)

    Get PDF
    Background: Humans can easily restore a speech signal that is temporally masked by an interfering sound (e.g., a cough masking parts of a word in a conversation), and listeners have the illusion that the speech continues through the interfering sound. This perceptual restoration for human speech is affected by prior experience. Here we provide evidence for perceptual restoration in complex vocalizations of a songbird that are acquired by vocal learning in a similar way as humans learn their language. Methodology/Principal Findings: European starlings were trained in a same/different paradigm to report salient differences between successive sounds. The birds ’ response latency for discriminating between a stimulus pair is an indicator for the salience of the difference, and these latencies can be used to evaluate perceptual distances using multidimensional scaling. For familiar motifs the birds showed a large perceptual distance if discriminating between song motifs that were muted for brief time periods and complete motifs. If the muted periods were filled with noise, the perceptual distance was reduced. For unfamiliar motifs no such difference was observed. Conclusions/Significance: The results suggest that starlings are able to perceptually restore partly masked sounds and, similarly to humans, rely on prior experience. They may be a suitable model to study the mechanism underlying experiencedependent perceptual restoration

    Big brains stabilize populations and facilitate colonization of variable habitats in birds

    Get PDF
    The cognitive buffer hypothesis posits that environmental variability can be a major driver of the evolution of cognition because an enhanced ability to produce flexible behavioural responses facilitates coping with the unexpected. Although comparative evidence supports different aspects of this hypothesis, a direct connection between cognition and the ability to survive a variable and unpredictable environment has yet to be demonstrated. Here, we use complementary demographic and evolutionary analyses to show that among birds, the mechanistic premise of this hypothesis is well supported but the implied direction of causality is not. Specifically, we show that although population dynamics are more stable and less affected by environmental variation in birds with larger relative brain sizes, the evolution of larger brains often pre-dated and facilitated the colonization of variable habitats rather than the other way around. Our findings highlight the importance of investigating the timeline of evolutionary events when interpreting patterns of phylogenetic correlation

    Intra-Clutch Ratio of Yolk Progesterone Level Changes with Laying Date in Rockhopper Penguins: A Strategy to Influence Brood Reduction?

    Get PDF
    Hatching asynchrony in avian species generally leads to a size hierarchy among siblings, favouring the first-hatched chicks. Maternally deposited hormones affect the embryo and chick's physiology and behaviour. It has been observed that progesterone, a hormone present at higher levels than other steroid hormones in egg yolks, is negatively related to body mass in embryos, chicks and adults. A differential within-clutch progesterone deposition could therefore be linked to the size hierarchy between siblings and to the resulting brood reduction. We tested whether yolk progesterone levels differed between eggs according to future parental ability to feed the entire clutch in wild rockhopper penguins Eudyptes chrysocome. This species presents a unique reversed egg-size dimorphism and hatching asynchrony, with the larger second-laid egg (B-egg) hatching before the smaller first-laid egg (A-egg). Yolk progesterone levels increased only slightly with female body mass at laying. However, intra-clutch ratios were not related to female body mass. On the other hand, yolk progesterone levels increased significantly with the date of laying onset for A-eggs while they decreased for B-eggs. Early clutches therefore had proportionally more progesterone in the B-egg compared to the A-egg while late clutches had proportionally less progesterone in the B-egg. We propose that females could strategically regulate yolk progesterone deposition within clutches according to the expected food availability during chick growth, an adaptive strategy to adjust brood reduction to conditions. We also discuss these results, relating to yolk progesterone, in the broader context of other yolk steroids

    A Dominance Hierarchy of Auditory Spatial Cues in Barn Owls

    Get PDF
    Background: Barn owls integrate spatial information across frequency channels to localize sounds in space. Methodology/Principal Findings: We presented barn owls with synchronous sounds that contained different bands of frequencies (3–5 kHz and 7–9 kHz) from different locations in space. When the owls were confronted with the conflicting localization cues from two synchronous sounds of equal level, their orienting responses were dominated by one of the sounds: they oriented toward the location of the low frequency sound when the sources were separated in azimuth; in contrast, they oriented toward the location of the high frequency sound when the sources were separated in elevation. We identified neural correlates of this behavioral effect in the optic tectum (OT, superior colliculus in mammals), which contains a map of auditory space and is involved in generating orienting movements to sounds. We found that low frequency cues dominate the representation of sound azimuth in the OT space map, whereas high frequency cues dominate the representation of sound elevation. Conclusions/Significance: We argue that the dominance hierarchy of localization cues reflects several factors: 1) the relative amplitude of the sound providing the cue, 2) the resolution with which the auditory system measures the value of a cue, and 3) the spatial ambiguity in interpreting the cue. These same factors may contribute to the relative weighting of soun

    Evolutionary Divergence in Brain Size between Migratory and Resident Birds

    Get PDF
    Despite important recent progress in our understanding of brain evolution, controversy remains regarding the evolutionary forces that have driven its enormous diversification in size. Here, we report that in passerine birds, migratory species tend to have brains that are substantially smaller (relative to body size) than those of resident species, confirming and generalizing previous studies. Phylogenetic reconstructions based on Bayesian Markov chain methods suggest an evolutionary scenario in which some large brained tropical passerines that invaded more seasonal regions evolved migratory behavior and migration itself selected for smaller brain size. Selection for smaller brains in migratory birds may arise from the energetic and developmental costs associated with a highly mobile life cycle, a possibility that is supported by a path analysis. Nevertheless, an important fraction (over 68%) of the correlation between brain mass and migratory distance comes from a direct effect of migration on brain size, perhaps reflecting costs associated with cognitive functions that have become less necessary in migratory species. Overall, our results highlight the importance of retrospective analyses in identifying selective pressures that have shaped brain evolution, and indicate that when it comes to the brain, larger is not always better

    Avian cerebellar floccular fossa size is not a proxy for flying ability in birds

    Get PDF
    Extinct animal behavior has often been inferred from qualitative assessments of relative brain region size in fossil endocranial casts. For instance, flight capability in pterosaurs and early birds has been inferred from the relative size of the cerebellar flocculus, which in life protrudes from the lateral surface of the cerebellum. A primary role of the flocculus is to integrate sensory information about head rotation and translation to stabilize visual gaze via the vestibulo-occular reflex (VOR). Because gaze stabilization is a critical aspect of flight, some authors have suggested that the flocculus is enlarged in flying species. Whether this can be further extended to a floccular expansion in highly maneuverable flying species or floccular reduction in flightless species is unknown. Here, we used micro computed-tomography to reconstruct “virtual” endocranial casts of 60 extant bird species, to extract the same level of anatomical information offered by fossils. Volumes of the floccular fossa and entire brain cavity were measured and these values correlated with four indices of flying behavior. Although a weak positive relationship was found between floccular fossa size and brachial index, no significant relationship was found between floccular fossa size and any other flight mode classification. These findings could be the result of the bony endocranium inaccurately reflecting the size of the neural flocculus, but might also reflect the importance of the flocculus for all modes of locomotion in birds. We therefore conclude that the relative size of the flocculus of endocranial casts is an unreliable predictor of locomotor behavior in extinct birds, and probably also pterosaurs and non-avian dinosaurs

    Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds

    Get PDF
    Sherpa Romeo green journal: open accessThe comparative anatomy of sensory systems has played a major role in developing theories and principles central to evolutionary neuroscience. This includes the central tenet of many comparativestudies, the principle of proper mass, which states that the size of a neural structure reflects its processing capacity. The size of structures within the sensory system is not, however, the only salient variable in sensory evolution. Further, the evolution of the brain and behavior are intimately tied to phylgenetic history, requiring studies to integrate neuroanatomy with behavior and phylogeny to gain a more holistic view of brain evolution. Birds have proven to be a useful group for theses tudies because of widespread interest in their phylogenetic relationships and a wealth of information on the functional organization of most of their sensory pathways. In this review, we examine the principle of proper mass in relation differences in the sensory capabilities among birds. We discuss how neuroanatomy, behavior, and phylogeny can be integrated to understand the evolution of sensory systems in birds providing evidence from visual, auditory, and somatosensory systems. We also consider the concept of a “trade-off,” where by one sensory system (or subpathway within a sensory system), may be expanded in size, at the expense of others, which are reduced in size.Ye

    Brain Cells in the Avian ‘Prefrontal Cortex’ Code for Features of Slot-Machine-Like Gambling

    Get PDF
    Slot machines are the most common and addictive form of gambling. In the current study, we recorded from single neurons in the ‘prefrontal cortex’ of pigeons while they played a slot-machine-like task. We identified four categories of neurons that coded for different aspects of our slot-machine-like task. Reward-Proximity neurons showed a linear increase in activity as the opportunity for a reward drew near. I-Won neurons fired only when the fourth stimulus of a winning (four-of-a-kind) combination was displayed. I-Lost neurons changed their firing rate at the presentation of the first nonidentical stimulus, that is, when it was apparent that no reward was forthcoming. Finally, Near-Miss neurons also changed their activity the moment it was recognized that a reward was no longer available, but more importantly, the activity level was related to whether the trial contained one, two, or three identical stimuli prior to the display of the nonidentical stimulus. These findings not only add to recent neurophysiological research employing simulated gambling paradigms, but also add to research addressing the functional correspondence between the avian NCL and primate PFC

    The evolution of skilled forelimb movements in carnivorans

    Get PDF
    xii, 151 leaves : ill. ; 28 cm.Emancipating the forelimbs from locomotion for use in other activities, such as food manipulation, is a major evolutionary milestone. A variety of selective forces and evolutionary correlates may influence the evolution of various degrees of skill with which the forelimbs are used. Using the order Carnivora as a test group, I assesed the relative influence of six factors: relative brain size, neocortical volume, manus proportions, body size, phylogenetic relatedness, type of locomotion and diet. I developed a rating system to describe the dexterity of individual species and compared the scores to the six factors using modern comparative methods. Only phylogeny and diet were significanly correlated with forelimb dexterity. More specifically, forelimb dexterity tends to be higher in caniform than in feliform carnivorans and decreases with increasing specialisation on vertebrate prey. I conclude that food handling and feeding niche breath have a significant effect upon the evolution of skilled forelimb movements

    The secret world of shrimps: polarisation vision at its best

    Get PDF
    Animal vision spans a great range of complexity, with systems evolving to detect variations in optical intensity, distribution, colour, and polarisation. Polarisation vision systems studied to date detect one to four channels of linear polarisation, combining them in opponent pairs to provide intensity-independent operation. Circular polarisation vision has never been seen, and is widely believed to play no part in animal vision. Polarisation is fully measured via Stokes' parameters--obtained by combined linear and circular polarisation measurements. Optimal polarisation vision is the ability to see Stokes' parameters: here we show that the crustacean \emph{Gonodactylus smithii} measures the exact components required. This vision provides optimal contrast-enhancement, and precise determination of polarisation with no confusion-states or neutral-points--significant advantages. We emphasise that linear and circular polarisation vision are not different modalities--both are necessary for optimal polarisation vision, regardless of the presence of strongly linear or circularly polarised features in the animal's environment.Comment: 10 pages, 6 figures, 2 table
    corecore